BinaryRelax: A Relaxation Approach For Training Deep Neural Networks With Quantized Weights

نویسندگان

  • Penghang Yin
  • Shuai Zhang
  • Jiancheng Lyu
  • Stanley Osher
  • Yingyong Qi
  • Jack Xin
چکیده

We propose BinaryRelax, a simple two-phase algorithm, for training deep neural networks with quantized weights. The set constraint that characterizes the quantization of weights is not imposed until the late stage of training, and a sequence of pseudo quantized weights is maintained. Specifically, we relax the hard constraint into a continuous regularizer via Moreau envelope, which turns out to be the squared Euclidean distance to the set of quantized weights. The pseudo quantized weights are obtained by linearly interpolating between the float weights and their quantizations. A continuation strategy is adopted to push the weights towards the quantized state by gradually increasing the regularization parameter. In the second phase, exact quantization scheme with a small learning rate is invoked to guarantee fully quantized weights. We test BinaryRelax on the benchmark CIFAR10 and CIFAR-100 color image datasets to demonstrate the superiority of the relaxed quantization approach and the improved accuracy over the state-of-the-art training methods. Finally, we prove the convergence of BinaryRelax under an approximate orthogonality condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep neural networks are robust to weight binarization and other non-linear distortions

Recent results show that deep neural networks achieve excellent performance even when, during training, weights are quantized and projected to a binary representation. Here, we show that this is just the tip of the iceberg: these same networks, during testing, also exhibit a remarkable robustness to distortions beyond quantization, including additive and multiplicative noise, and a class of non...

متن کامل

Training Quantized Nets: A Deeper Understanding

Currently, deep neural networks are deployed on low-power portable devices by first training a full-precision model using powerful hardware, and then deriving a corresponding lowprecision model for efficient inference on such systems. However, training models directly with coarsely quantized weights is a key step towards learning on embedded platforms that have limited computing resources, memo...

متن کامل

ADaPTION: Toolbox and Benchmark for Training Convolutional Neural Networks with Reduced Numerical Precision Weights and Activation

Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) are useful for many practical tasks in machine learning. Synaptic weights, as well as neuron activation functions within the deep network are typically stored with high-precision formats, e.g. 32 bit floating point. However, since storage capacity is limited and each memory access consumes power, both storage capacity and memo...

متن کامل

Towards a Deeper Understanding of Training Quantized Neural Networks

Training neural networks with coarsely quantized weights is a key step towards learning on embedded platforms that have limited computing resources, memory capacity, and power consumption. Numerous recent publications have studied methods for training quantized networks, but these studies have been purely experimental. In this work, we investigate the theory of training quantized neural network...

متن کامل

روش پیش‌تعلیم سریع بر مبنای کمینه‌سازی خطا برای همگرائی یادگیری شبکه‌های‌ عصبی با ساختار عمیق

In this paper, we propose efficient method for pre-training of deep bottleneck neural network (DBNN). Pre-training is used for initial value of network weights convergence of DBNN is difficult because of different local minimums. While with efficient initial value for network weights can avoided some local minimums. This method divides DBNN to multi single hidden layer and adjusts them, then we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.06313  شماره 

صفحات  -

تاریخ انتشار 2018